Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38536680

RESUMEN

Exoskeletons are a burgeoning technology with many possible applications to improve human life; focusing the effort of exoskeleton research and development on the most important features is essential for facilitating adoption and maximizing positive societal impact. To identify important focus areas for exoskeleton research and development, we conducted a survey with 154 potential users (older adults) and another survey with 152 clinicians. The surveys were conducted online and to ensure a consistent concept of an exoskeleton across respondents, an image of a hip exoskeleton was shown during exoskeleton-related prompts. The survey responses indicate that both older adults and clinicians are open to using exoskeletons, fall prevention and joint pain reduction are especially important features, and users are likely to wear an exoskeleton in the scenarios when it has the greatest opportunity to help prevent a fall. These findings can help inform future exoskeleton research and guide the development of devices that are accepted, used, and provide meaningful benefit to users.


Asunto(s)
Dispositivo Exoesqueleto , Humanos , Anciano , Caminata/fisiología , Accidentes por Caídas/prevención & control , Extremidad Inferior/fisiología
2.
PLoS One ; 18(11): e0295152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033114

RESUMEN

Creating large-scale public datasets of human motion biomechanics could unlock data-driven breakthroughs in our understanding of human motion, neuromuscular diseases, and assistive devices. However, the manual effort currently required to process motion capture data and quantify the kinematics and dynamics of movement is costly and limits the collection and sharing of large-scale biomechanical datasets. We present a method, called AddBiomechanics, to automate and standardize the quantification of human movement dynamics from motion capture data. We use linear methods followed by a non-convex bilevel optimization to scale the body segments of a musculoskeletal model, register the locations of optical markers placed on an experimental subject to the markers on a musculoskeletal model, and compute body segment kinematics given trajectories of experimental markers during a motion. We then apply a linear method followed by another non-convex optimization to find body segment masses and fine tune kinematics to minimize residual forces given corresponding trajectories of ground reaction forces. The optimization approach requires approximately 3-5 minutes to determine a subject's skeleton dimensions and motion kinematics, and less than 30 minutes of computation to also determine dynamically consistent skeleton inertia properties and fine-tuned kinematics and kinetics, compared with about one day of manual work for a human expert. We used AddBiomechanics to automatically reconstruct joint angle and torque trajectories from previously published multi-activity datasets, achieving close correspondence to expert-calculated values, marker root-mean-square errors less than 2 cm, and residual force magnitudes smaller than 2% of peak external force. Finally, we confirmed that AddBiomechanics accurately reproduced joint kinematics and kinetics from synthetic walking data with low marker error and residual loads. We have published the algorithm as an open source cloud service at AddBiomechanics.org, which is available at no cost and asks that users agree to share processed and de-identified data with the community. As of this writing, hundreds of researchers have used the prototype tool to process and share about ten thousand motion files from about one thousand experimental subjects. Reducing the barriers to processing and sharing high-quality human motion biomechanics data will enable more people to use state-of-the-art biomechanical analysis, do so at lower cost, and share larger and more accurate datasets.


Asunto(s)
Modelos Biológicos , Sistema Musculoesquelético , Humanos , Fenómenos Biomecánicos , Caminata , Movimiento (Física)
3.
IEEE Int Conf Robot Autom ; 2023: 10483-10489, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38009123

RESUMEN

Falls are the leading cause of fatal and non-fatal injuries, particularly for older persons. Imbalance can result from the body's internal causes (illness), or external causes (active or passive perturbation). Active perturbation results from applying an external force to a person, while passive perturbation results from human motion interacting with a static obstacle. This work proposes a metric that allows for the monitoring of the persons torso and its correlation to active and passive perturbations. We show that large changes in the torso sway can be strongly correlated to active perturbations. We also show that we can reasonably predict the future path and expected change in torso sway by conditioning the expected path and torso sway on the past trajectory, torso motion, and the surrounding scene. This could have direct future applications to fall prevention. Results demonstrate that the torso sway is strongly correlated with perturbations. And our model is able to make use of the visual cues presented in the panorama and condition the prediction accordingly.

4.
bioRxiv ; 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37398034

RESUMEN

Creating large-scale public datasets of human motion biomechanics could unlock data-driven breakthroughs in our understanding of human motion, neuromuscular diseases, and assistive devices. However, the manual effort currently required to process motion capture data and quantify the kinematics and dynamics of movement is costly and limits the collection and sharing of large-scale biomechanical datasets. We present a method, called AddBiomechanics, to automate and standardize the quantification of human movement dynamics from motion capture data. We use linear methods followed by a non-convex bilevel optimization to scale the body segments of a musculoskeletal model, register the locations of optical markers placed on an experimental subject to the markers on a musculoskeletal model, and compute body segment kinematics given trajectories of experimental markers during a motion. We then apply a linear method followed by another non-convex optimization to find body segment masses and fine tune kinematics to minimize residual forces given corresponding trajectories of ground reaction forces. The optimization approach requires approximately 3-5 minutes to determine a subjects skeleton dimensions and motion kinematics, and less than 30 minutes of computation to also determine dynamically consistent skeleton inertia properties and fine-tuned kinematics and kinetics, compared with about one day of manual work for a human expert. We used AddBiomechanics to automatically reconstruct joint angle and torque trajectories from previously published multi-activity datasets, achieving close correspondence to expert-calculated values, marker root-mean-square errors less than 2cm, and residual force magnitudes smaller than 2% of peak external force. Finally, we confirmed that AddBiomechanics accurately reproduced joint kinematics and kinetics from synthetic walking data with low marker error and residual loads. We have published the algorithm as an open source cloud service at AddBiomechanics.org, which is available at no cost and asks that users agree to share processed and de-identified data with the community. As of this writing, hundreds of researchers have used the prototype tool to process and share about ten thousand motion files from about one thousand experimental subjects. Reducing the barriers to processing and sharing high-quality human motion biomechanics data will enable more people to use state-of-the-art biomechanical analysis, do so at lower cost, and share larger and more accurate datasets.

5.
IEEE Trans Vis Comput Graph ; 28(3): 1648-1660, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32816675

RESUMEN

A large body of animation research focuses on optimization of movement control, either as action sequences or policy parameters. However, as closed-form expressions of the objective functions are often not available, our understanding of the optimization problems is limited. Building on recent work on analyzing neural network training, we contribute novel visualizations of high-dimensional control optimization landscapes; this yields insights into why control optimization is hard and why common practices like early termination and spline-based action parameterizations make optimization easier. For example, our experiments show how trajectory optimization can become increasingly ill-conditioned with longer trajectories, but parameterizing control as partial target states-e.g., target angles converted to torques using a PD-controller-can act as an efficient preconditioner. Both our visualizations and quantitative empirical data also indicate that neural network policy optimization scales better than trajectory optimization for long planning horizons. Our work advances the understanding of movement optimization and our visualizations should also provide value in educational use.

6.
IEEE Trans Vis Comput Graph ; 28(12): 4700-4712, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34314357

RESUMEN

We propose a novel method for exploring the dynamics of physically based animated characters, and learning a task-agnostic action space that makes movement optimization easier. Like several previous article, we parameterize actions as target states, and learn a short-horizon goal-conditioned low-level control policy that drives the agent's state towards the targets. Our novel contribution is that with our exploration data, we are able to learn the low-level policy in a generic manner and without any reference movement data. Trained once for each agent or simulation environment, the policy improves the efficiency of optimizing both trajectories and high-level policies across multiple tasks and optimization algorithms. We also contribute novel visualizations that show how using target states as actions makes optimized trajectories more robust to disturbances; this manifests as wider optima that are easy to find. Due to its simplicity and generality, our proposed approach should provide a building block that can improve a large variety of movement optimization methods and applications.

7.
IEEE Int Conf Rehabil Robot ; 2019: 224-231, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374634

RESUMEN

Robotic assistance presents an opportunity to benefit the lives of many people with physical disabilities, yet accurately sensing the human body and tracking human motion remain difficult for robots. We present a multidimensional capacitive sensing technique that estimates the local pose of a human limb in real time. A key benefit of this sensing method is that it can sense the limb through opaque materials, including fabrics and wet cloth. Our method uses a multielectrode capacitive sensor mounted to a robot's end effector. A neural network model estimates the position of the closest point on a person's limb and the orientation of the limb's central axis relative to the sensor's frame of reference. These pose estimates enable the robot to move its end effector with respect to the limb using feedback control. We demonstrate that a PR2 robot can use this approach with a custom six electrode capacitive sensor to assist with two activities of daily living- dressing and bathing. The robot pulled the sleeve of a hospital gown onto able-bodied participants' right arms, while tracking human motion. When assisting with bathing, the robot moved a soft wet washcloth to follow the contours of able-bodied participants' limbs, cleaning their surfaces. Overall, we found that multidimensional capacitive sensing presents a promising approach for robots to sense and track the human body during assistive tasks that require physical human-robot interaction.


Asunto(s)
Actividades Cotidianas , Capacidad Eléctrica , Robótica , Dispositivos de Autoayuda , Algoritmos , Fenómenos Biomecánicos , Electrodos , Humanos , Movimiento (Física) , Redes Neurales de la Computación
8.
PLoS One ; 12(7): e0179637, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28700719

RESUMEN

Here we show that novel, energy-recycling stairs reduce the amount of work required for humans to both ascend and descend stairs. Our low-power, interactive, and modular steps can be placed on existing staircases, storing energy during stair descent and returning that energy to the user during stair ascent. Energy is recycled through event-triggered latching and unlatching of passive springs without the use of powered actuators. When ascending the energy-recycling stairs, naive users generated 17.4 ± 6.9% less positive work with their leading legs compared to conventional stairs, with the knee joint positive work reduced by 37.7 ± 10.5%. Users also generated 21.9 ± 17.8% less negative work with their trailing legs during stair descent, with ankle joint negative work reduced by 26.0 ± 15.9%. Our low-power energy-recycling stairs have the potential to assist people with mobility impairments during stair negotiation on existing staircases.


Asunto(s)
Dispositivos de Autoayuda , Subida de Escaleras/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Articulación de la Rodilla/fisiología , Masculino
9.
PLoS Comput Biol ; 11(12): e1004605, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26683221

RESUMEN

Plesiosaurians are an extinct group of highly derived Mesozoic marine reptiles with a global distribution that spans 135 million years from the Early Jurassic to the Late Cretaceous. During their long evolutionary history they maintained a unique body plan with two pairs of large wing-like flippers, but their locomotion has been a topic of debate for almost 200 years. Key areas of controversy have concerned the most efficient biologically possible limb stroke, e.g. whether it consisted of rowing, underwater flight, or modified underwater flight, and how the four limbs moved in relation to each other: did they move in or out of phase? Previous studies have investigated plesiosaur swimming using a variety of methods, including skeletal analysis, human swimmers, and robotics. We adopt a novel approach using a digital, three-dimensional, articulated, free-swimming plesiosaur in a simulated fluid. We generated a large number of simulations under various joint degrees of freedom to investigate how the locomotory repertoire changes under different parameters. Within the biologically possible range of limb motion, the simulated plesiosaur swims primarily with its forelimbs using an unmodified underwater flight stroke, essentially the same as turtles and penguins. In contrast, the hindlimbs provide relatively weak thrust in all simulations. We conclude that plesiosaurs were forelimb-dominated swimmers that used their hind limbs mainly for maneuverability and stability.


Asunto(s)
Dinosaurios/fisiología , Vuelo Animal/fisiología , Miembro Anterior/fisiología , Modelos Biológicos , Natación/fisiología , Alas de Animales/fisiología , Animales , Simulación por Computador , Miembro Posterior/fisiología , Reología/métodos
10.
Nature ; 438(7071): 1148-50, 2005 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-16372008

RESUMEN

Dance is believed to be important in the courtship of a variety of species, including humans, but nothing is known about what dance reveals about the underlying phenotypic--or genotypic--quality of the dancer. One measure of quality in evolutionary studies is the degree of bodily symmetry (fluctuating asymmetry, FA), because it measures developmental stability. Does dance quality reveal FA to the observer and is the effect stronger for male dancers than female? To answer these questions, we chose a population that has been measured twice for FA since 1996 (ref. 9) in a society (Jamaican) in which dancing is important in the lives of both sexes. Motion-capture cameras created controlled stimuli (in the form of videos) that isolated dance movements from all other aspects of visual appearance (including FA), and the same population evaluated these videos for dancing ability. Here we report that there are strong positive associations between symmetry and dancing ability, and these associations were stronger in men than in women. In addition, women rate dances by symmetrical men relatively more positively than do men, and more-symmetrical men value symmetry in women dancers more than do less-symmetrical men. In summary, dance in Jamaica seems to show evidence of sexual selection and to reveal important information about the dancer.


Asunto(s)
Envejecimiento/fisiología , Baile/fisiología , Caracteres Sexuales , Adolescente , Adulto , Cortejo , Femenino , Genotipo , Humanos , Jamaica , Masculino , Fenotipo , Reproducción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...